LESSON 3.2c

Complex Solutions and Zeros

Where are we? What are we doing? Where are we going?

Learning how to "*solve*" quadratic functions/equations

... find the "*roots*" of the function/equation ... which are the same as the *x*-intercepts.

- 1. Solve by *graphing* the equation on your graphing calculator (yesterday)
- 2. Solve *Algebraically*
 - using square roots (L3.1 yesterday)
 - by factoring / "finding the zeros" of the function (L3.1 today)
 - when the quadratic has COMPLEX SOLUTIONS
 - completing the square (L3.3)
 - using the quadratic function (L3.4)

Today you will:

- Solve quadratic functions with complex solutions
- Practice using English to describe math processes and equations

So far...

- We've said when asked to solve something like the following the answer is *no solution*:
 - $x^2 = -4$
- Actually the correct answer is:
 - No solution *IN THE REAL NUMBER SYSTEM*
- But what if we considered the *complex number system*? Would we be able to get an answer then?

Solve (a) $x^2 + 4 = 0$ and (b) $2x^2 - 11 = -47$.

SOLUTION

LOOKING FOR STRUCTURE

Notice that you can use the solutions in Example 6(a) to factor $x^2 + 4$ as (x + 2i)(x - 2i).

Write original equation. **a**. $x^2 + 4 = 0$ $x^2 = -4$ Subtract 4 from each side. Take square root of each side. $x = \pm \sqrt{-4}$ Write in terms of *i*. $x = \pm 2i$ The solutions are 2i and -2i. **b.** $2x^2 - 11 = -47$ Write original equation. $2x^2 = -36$ Add 11 to each side. $x^2 = -18$ Divide each side by 2. $x = \pm \sqrt{-18}$ Take square root of each side. $x = \pm i\sqrt{18}$ Write in terms of *i*. Simplify radical. $x = \pm 3i\sqrt{2}$ The solutions are $3i\sqrt{2}$ and $-3i\sqrt{2}$.

Work on #49-50 page 109 in your text.

You have 10 minutes.

FINDING AN ENTRY POINT

The graph of f does not intersect the *x*-axis, which means f has no real zeros. So, f must have complex zeros, which you can find algebraically.

Find the zeros of $f(x) = 4x^2 + 20$.

SOLUTION

$4x^2 + 20 = 0$	Set $f(x)$ equal to 0.
$4x^2 = -20$	Subtract 20 from each side.
$x^2 = -5$	Divide each side by 4.
$x = \pm \sqrt{-5}$	Take square root of each side.
$x = \pm i\sqrt{5}$	Write in terms of <i>i</i> .

So, the zeros of *f* are $i\sqrt{5}$ and $-i\sqrt{5}$.

Check $f(i\sqrt{5}) = 4 (i\sqrt{5})^2 + 20 = 4 \cdot 5i^2 + 20 = 4(-5) + 20 = 0$ $f(-i\sqrt{5}) = 4 (-i\sqrt{5})^2 + 20 = 4 \cdot 5i^2 + 20 = 4(-5) + 20 = 0$ Work on #55-62 page 109 in your text.

You have 10 minutes.

Homework

Pg 109, # 49-61, 63-65, 67-68, 71-74